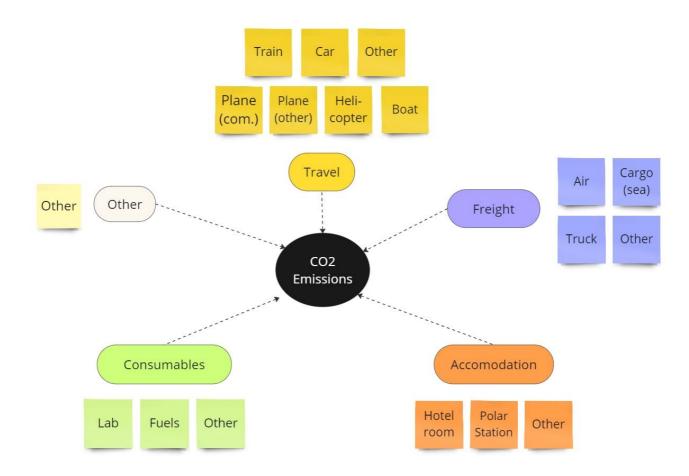
SPI's Quick Guide to CO₂ Emission Assessment

CO2 Assessment Tool

Goal of the CO₂ assessment

The purpose of the CO_2 assessment tool is to help estimate the carbon footprint of field campaigns, to identify significant emission sources, and to contribute to the development of adequate mitigation strategies of the carbon footprint of polar fieldwork while ensuring scientific quality. This tool is embedded in SPI's overall effort to measure its environmental impact and contribute to greater sustainability of polar research.


Role in the evaluation process

While it is expected that applicants make sound efforts to maximise scientific outputs while minimising the environmental footprint of their proposed projects, the SPI is aware that some projects can have a high environmental footprint that cannot be avoided by means accessible to the applicant. Therefore, a thorough estimation of the carbon footprint of a proposed project cannot penalise in any way the proposal during the evaluation process. Rather, the SPI will consider efforts made to optimise the science output—CO₂ emission ratio. Should your proposal be selected for funding, please note that SPI will ask you to provide one final carbon footprint assessment upon completion of your project in order to compare your forecast with effective emissions.

General guidelines

Completing the CO_2 emission assessment form takes at least 20 minutes. Applicants invited to prioritise big sources of emissions. Once completed, the form is to be uploaded on SPI's proposal submission platform as a XLSX read only document. The assessment template is designed to guarantee a high level of flexibility. New emission categories and project specificities are appreciated as they may lead to a higher estimation accuracy. Feedback on the assessment tool is very welcome and will be considered in updated versions. Feedback can be given on a separate document and uploaded on SPI's proposal submission platform.

Overview of the emission components

Step 1: Fill in the project details in the summary sheet.

Fill in project details: Author: Period: Project: Project reference (secretariat use): Fill in project details: Author: Name Lastname Period: June 2024 - October 2024 Project: Project reference (secretariat use):

	 Locked cells
	,

Note that locked cells cannot be manually populated.

Step 2: Navigate the document to the desired category by clicking on the links in the category column.

Click on the links in 'Category' to navigate the document

Туре	Category	CO2 (kg)	Comment (Optional)
	Commercial flights	-	
	Non-commercial flights	-	
	Helicopter	-	
Travel	Boat	-	
	Irain	-	
	Car	-	
	Other	-	
	Plane	-	
E:.L.	Cargo (Sea)	-	
Freight	Iruck	-	
	Other	-	
	Hotel.Room	-	
Accommodation	Polar Station	-	
	Other	-	
	Fuels	-	
Consumables	Chemicals	-	
	Other	-	
Other	Other	-	

Total CO2 (kg) emissions:	-
---------------------------	---

Step 3: Fill in the table.

As you populate the table, the locked cells will be automatically calculated.

Date (Optional)	Select Helicopter Size	Number of Landing/Take-off cycles (LTO)	Flight time (hours)	Co2 (kg)
01/06/2024	big (AS355 Ecureuil 21)	2	2	1'722

The sum of CO₂ emissions per category is calculated below the table.

Total CO2 (kg)	1'722
----------------	-------

Note: If you are not satisfied with the value proposed in the CO_2 (kg) column, you can overwrite it in the 'overwrite CO_2 (kg) value' column.

s)	Co2 (kg)	Overwrite CO2 (kg) value	Comment (Optional)
	2'500	2'500	We consumed 300 litres of jet fuel extra

The sum of CO₂ emissions for the category will also be automatically updated.

Total CO2 (kg) 2'500

The summary sheet will be automatically updated with emissions reported throughout the document.